И этому есть причина. Она заключается в простом арифметическом утверждении N + 1 (где N — лю-бое число), выражающем основополагающее предположение арифметики, которое звучит так: «К любому числу можно прибавить единицу». Если вы начнете с 1, прибавите еще 1, и так далее до бесконечности, что вы получите? Вы получите арифметическую прямую 1 + 1 + 1 + 1… а также соответствие между нечисло-вой геометрией прямолинейной структуры формы и линейным увеличением в теории чисел. Отсюда выте-кают все остальные математические дисциплины. Следует отдавать себе отчет в том, что, какие бы экзоти-ческие случаи ни возникали для описания перед современной математикой, они все же, по своей сути, яв-ляются арифметическими, геометрическими или представляют собой комбинацию того и другого. Из этого исключений нет.
Наша современная математика, при помощи которой мы отправили человека на Луну, по своей сути не изменилась с тех дней, когда люди сражались друг с другом на колесницах медным оружием! Прочную и окостеневшую традицию нашей математики энергично защищают от попыток поставить под сомнение правомерность повсеместного употребления прямолинейного подхода, и это вопреки отсутствию каких бы то ни было свидетельств того, что миром природных форм правят линейные закономерности. Например, что касается утверждения «свет естественным образом распространяется по прямой», то мы просто пред-полагаем это, пренебрегая тем, что естественной траекторией его движения может быть дуга, которую мы на данном этапе пока не можем обнаружить. Почему свет должен отличаться от всего остального в приро-де? Математические круги отстаивают традиционные взгляды и предписания, которые превратились в не-что вроде культа усопших, почитаемых выше основополагающих принципов объективности и единства. Они думают, что поскольку единство невозможно обнаружить исходя из принципов линейности, то, следо-вательно, его не существует. Они скорее скажут, что единства и истины в абсолютных терминах не сущест-вует, чем допустят, что их математика может ошибаться. Этим в логике они закладывают фундамент, о ко-торый разбиваются все другие устремления человека. Это поразительный случай коллективной спеси.
Какое значение имеет выбор типа линий (прямая или дуга)? В настоящее время математика допуска-ет легкое равенство и отрицает иерархичность. Это равенство позволяет описывать криволинейные формы в терминах прямых (число? — классический пример этому). Там, где греки надеялись, что это равенство истинно, современная математика решает заставить Вселенную пойти на уступки эгоистическому жела-нию вбить круглый кол в квадратное отверстие, да еще чтобы при этом не было никакие зазоров. В сущно-сти, в этом и состоит основная задача математического счисления.
Что же определяет, в абсолютном смысле, свойства прямых и кривых линий? Прямая линия — это «ряд одинаковых точек, которые никак не связаны с точками, находящимися вне этого ряда». Кривая линия — это «ряд точек, связанных с точкой (точками), находящейся (находящимися) вне этого ряда». Это очевидно. Нарисуйте кривую линию, и вы увидите, что значит «внешнее» и «внутреннее». Далее, если сде-лать сечение пополам двух любых сегментов этой кривой прямыми линиями, то эти секущие пересекутся в центре (центрах) этой линии. Таким образом, для прямой линии необходимо по крайней мере две точки, а в кривой, по сути, присутствуют три. Третья точка (т.е. центр) не всегда присутствует явно, но ее легко найти. Это похоже на секрет, который кривая желает сохранить.