В таком случае, «наука о числах» должна выводиться из геометрических констант, а не наоборот, как у нас. Это и было главным в искусстве Евклида. Он сделал так, что создавалась видимость того, что между дугой и прямой линией существует равнозначность. Он замалчивал жизненно важную информацию о ду-гах, членил геометрически единые феномены (т.е. во всех треугольниках делил пополам стороны и углы), добавлял ложные выводы к постулатам, общим понятиям и определениям и не доводил до логического за-вершения свои теоремы — и я могу доказать, что все это действительно так. Он делал это последовательно и преднамеренно, чтобы «спасти греческую математику». Он прилагал удивительные усилия, и современные математические круги до сих пор еще не до конца их поняли, поскольку они заблудились в дебрях схола-стического истолкования его трудов.
Но вернемся к числам. Эти «единицы» (пальцы) являются «наименьшими неразложимыми отраже-ниями единства». То есть каждая единица являет собой целое, обладая всеми качествами изначальной це-лостности единства. Поскольку эти единицы являются «отражениями единства», то можно сказать: «Хоро-шо, значит, сами эти единицы можно при помощи той же операции разложить на более простые единицы… И где же здесь „неразложимость“? Если продолжить деление единиц, получается „универсальная линей-ка“. Если у меня есть линейка, положим, длиной в ярд, то в этом ярде у меня будет 36 дюймов. Если я захо-чу, то, руководствуясь той же логикой, я могу эти дюймы делить и дальше, на более мелкие части. Вот по-чему единицы являются отражением единства».
То, что у нас в действительности имеется сейчас, — это великое «единое» (единство) и меньшее «единое» (единица). Каким же образом их откалибровать, чтобы они согласовывались в рамках самой сис-темы? Этот вопрос и загнал в тупик пифагорейцев, остается он неразрешенным и сегодня. Мы не смогли откалибровать единицу по единству (поэтому пренебрегли им). И именно здесь в игру вступает «диадиче-ское действие» (возведение в квадрат).
Если бы я решил воспользоваться количеством своих пальцев в качестве основания для системы счисления (десятичной системы), каждый палец я обозначил бы черточкой, вот так:
11111 11111.
Применяя к этому «диадическое действие» (возведение в квадрат), я получаю следующее:
11111111112 = 1234567900987654321.
Заметьте, в возрастающей последовательности чисел отсутствует 8. Как такое может быть? Это что, чистая случайность? Сколько ни производи вычислений, эта выпавшая в восходящей последовательности восьмерка так и не появится в качестве члена ряда! Далее видим поразительный пример законченной сим-метрии, подтверждающий то, что это именно «то, чего хочет Вселенная». Число, обратно пропорциональ-ное 8, — это 125 (целые числа, обозначающие единство, диаду и среднее целочисленное от основания деся-тичного счисления).
Навскидку можно привести следующие примеры, вытекающие из этой симметрии:
123456790? 8 = 98765432;
1 / 0,1111111111 = 9;
1 / 0,11111111112 = 92 = 81;
/ 2,2222222222 =;
1 / 0,987654321 = 1,0125;
0,0987654321 / 8 = 0,01234567901234… = 1 / 92.
Опять-таки, нигде в интегральной математике (которой даже мы не можем избежать) вы не найдете пропавшей восьмерки в восходящей последовательности. Она просто не появляется! Если вы выставите эту цифру, то навяжете «неестественные» для этого ряда условия и сразу же получите асимметричность, как например:
= 11111,11106!